73 research outputs found

    Possibility to study eta-mesic nuclei and photoproduction of slow eta-mesons at the GRAAL facility

    Full text link
    A new experiment is proposed with the aim to study eta-mesic nuclei and low-energy interactions of eta with nuclei. Two decay modes of eta produced by a photon beam inside a nucleus will be observed, namely a collisional decay \eta N \to \pi N inside the nucleus and the radiative decay \eta \to \gamma \gamma outside. In addition, a collisional decay of stopped S_{11}(1535) resonance inside the nucleus, S_{11}(1535) N \to N N, will be studied. The experiment can be performed using the tagged photon beam at ESRF with the end-point energy 1000 MeV and the GRAAL detector which includes a high-resolution BGO calorimeter and a large acceptance lead-scintillator time-of-flight wall. Some results of simulation and estimates of yields are given.Comment: 20 pages, 19 figure

    Measurement of Time Resolution of Scintillation Detectors with EQR-15 Silicon Photodetectors for the Time-of-Flight Neutron Detector of the BM@N Experiment

    Full text link
    To study the dependence of the equation of state of high density nuclear matter on the term characterizing the isospin (proton-neutron) asymmetry of nuclear matter, it is necessary to measure azimuthal flow of neutrons as well as azimuthal flow of charged particles from a dense nuclear matter in the nuclear-nuclear collisions. For this purpose INR RAS is developing a new high-granular neutron detector which will be used in the BM@N experiment at the extracted beam of the Nuclotron accelerator at JINR (Dubna). This detector will identify neutrons and measure their energies in the heavy-ion collisions up to 4 GeV per nucleon. This article presents the results of measurements of the time resolution and light yields of samples of scintillation detectors with sizes 40Γ—\times40Γ—\times25 mm3^3 that will be used in a neutron detector based on the currently available fast plastic scintillator manufactured by JINR using an EQR15 11-6060D-S photodetector for light readout. For comparison, the results of measurements for a detector of the same size with a fast scintillator EJ-230 and with the same type of photodetector are given. The measurements were made on cosmic muons as well as on the electron synchrotron "Pakhra" of the Lebedev Physical Institute of the Russian Academy of Sciences located in Troitsk, Moscow

    Characteristics of the secondary electrons calibration beam of the accelerator S-25R "Pakhra"

    Full text link
    The characteristics of the secondary electrons` calibration quasi-monochromatic beam of the accelerator S-25R "Pakhra" of the Lebedev Physical Institute of the Russian Academy of Sciences (LPI) on the basis of magnet SP-57 are presented. With an electron energy in the range of 45-280 MeV, a collimator diameter in front of the trigger counters of 3 mm and copper Converter thicknesses of 1-3 mm, the energy resolution and beam intensity were 4.4-2.2% and around 16 e/sec, respectively

    Wind regime of the mesosphere - Lower thermosphere of the Earth

    Get PDF
    Nowadays investigations of the wind regime of the mesosphere - lower thermosphere (80-100 km) using ground-based (including radiometeor method) and satellite measurements allow the setting and the decision of the task of the creation the global model of the circulation including background motions and temporal variability. The temporal variability is due to the wide spectrum of temporal and spatial scales of waves existing in the atmosphere. Radiosystem of Kazan University is one of 23 meteor radars operating currently in the World. Radiometeor wind measurements in Kazan University started in 1964. During the period of 1964-1965, the first annual cycle of observation is accomplished. Long cycles of observations accomplished during 1979-2002. Uninterrupted cycle of observations started in November 2002 allowed the detailed structure of the temporal variability in the region of the mesosphere - lower thermosphere. Modern methods of the analysis along with background motions allowed the detection of short-period (5-10 minutes) innergravity waves, tidal waves, planetary waves (2-30 days), seasonal variations (annual and semiannual oscillations). Dynamics of this height region of the atmosphere presents significant scientific and practical interests. Due to propagating from the lower atmosphere waves experience the dissipation and the filtration and affects to the altitudinal and seasonal structure of the circulation we should expect the affection of these waves to the disturbed structure of the ionosphere

    ВлияниС повСдСнчСского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° водитСля Π½Π° ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ транспортного Π·Π°Ρ‚ΠΎΡ€Π°

    Get PDF
    Driving in a traffic flow implies involvement in difficult traffic situations that adversely affects response time of a driver, which in turn is considered when estimating stopping distance of a vehicle and determines road safety. This relationship shows the effect of driver behaviour in traffic flow on the road traffic situation. The objective of the study was to study behavioural factors that influence driver’s decisions. The study used methods of driver behaviour modelling, mathematical modelling, experimental studies of the mental and psychological functions of drivers. Modelling the driver’s behaviour, considering various combinations of many behavioural and other factors, leads to a large number of options for mathematical description of driver behaviour, which makes it difficult to use this approach to describe behaviour of drivers under the conditions of a real street-road network. The research has analysed several works devoted to the study of control action of drivers, using unknown coefficients, describing a model of movement of vehicles considering accuracy of their control. Driving through an unregulated intersection is considered as the most complex and informative version of driver’s behaviour. It is found that when modelling a traffic flow, it is necessary to take into account the degree of resoluteness of drivers (through determination of a coefficient of resoluteness which is a random variable that takes into account the probability distribution of the coefficient’s value in conjunction with the probability distribution of the function of traffic flow intensity). The distribution of the coefficient of resoluteness of drivers, obtained from experimental data, was subject to analysis. It is determined that the driving style affects formation of traffic congestion. The assessment of the driving style is made through conditional classification of driver behaviour on the road, namely marked by manifestation of aggression and timidity. When studying the behaviour of timid and aggressive drivers, several pairs of trajectories and the dynamics of the corresponding traffic flow density, were considered and calculated based on Edie’s model. It has been confirmed that traffic congestion has the greatest negative effect on choleric drivers and sanguine drivers. Besides, there is a relationship between the response time of a driver and the change in his functional condition. It is concluded that to improve road safety thanks to a more accurate assessment of possible risks of formation of congestion situations, it is necessary to consider behavioural characteristics and temperaments of the drivers.Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½ΠΎΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠ΅ ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°Π΅Ρ‚ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π² слоТныС Π΄ΠΎΡ€ΠΎΠΆΠ½Ρ‹Π΅ ситуации, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° врСмя Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ водитСля, которая Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ учитываСтся ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ транспортного срСдства ΠΈ опрСдСляСт Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠ³ΠΎ двиТСния. Π­Ρ‚Π° взаимосвязь ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ влияниС повСдСния Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ Π² транспортном ΠΏΠΎΡ‚ΠΎΠΊΠ΅ Π½Π° Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΡ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚Π½ΡƒΡŽ ΡΠΈΡ‚ΡƒΠ°Ρ†ΠΈΡŽ. ЦСлью исслСдования Π±Ρ‹Π»ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ повСдСнчСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²Π»ΠΈΡΡŽΡ‰ΠΈΡ… Π½Π° принятиС водитСлями Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ. Π’ Ρ…ΠΎΠ΄Π΅ исслСдования ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ модСлирования повСдСния Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ, матСматичСского модСлирования, ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ исслСдования психичСских ΠΈ психологичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ повСдСния водитСля с ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ сочСтания мноТСства повСдСнчСских ΠΈ ΠΈΠ½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π±ΠΎΠ»ΡŒΡˆΠΎΠΌΡƒ количСству Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² матСматичСского описания Ρ‚Π°ΠΊΠΎΠ³ΠΎ повСдСния, Ρ‡Ρ‚ΠΎ затрудняСт ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΏΡ€ΠΈ описании повСдСния Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ Π² условиях Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΡƒΠ»ΠΈΡ‡Π½ΠΎ-Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ сСти. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹, посвящённыС ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ воздСйствия водитСля с использованиСм нСизвСстных коэффициСнтов, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΡ… модСль двиТСния транспортных срСдств с ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ точности управлСния ΠΈΠΌ. РассмотрСн Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ слоТный ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ повСдСния водитСля ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅Π·Π΄Π΅ Π½Π΅Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ пСрСсСчСния. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ транспортного ΠΏΠΎΡ‚ΠΎΠΊΠ° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Ρ€Π΅ΡˆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ (Ρ‡Π΅Ρ€Π΅Π· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ коэффициСнта Ρ€Π΅ΡˆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈβ€“ ΡΠ»ΡƒΡ‡Π°ΠΉΠ½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ с ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ распрСдСлСния вСроятности Π΅Π³ΠΎ значСния Π² совокупности с распрСдСлСниСм вСроятностСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ интСнсивности транспортного ΠΏΠΎΡ‚ΠΎΠΊΠ°). ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ распрСдСлСниС коэффициСнта Ρ€Π΅ΡˆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ ΠΏΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ транспортного Π·Π°Ρ‚ΠΎΡ€Π° ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ влияниС ΡΡ‚ΠΈΠ»ΡŒ воТдСния, для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΡƒΡΠ»ΠΎΠ²Π½ΡƒΡŽ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ повСдСния Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ Π½Π° Π΄ΠΎΡ€ΠΎΠ³Π΅, Π°ΠΈΠΌΠ΅Π½Π½ΠΎ проявлСниС агрСссии ΠΈ робости. ΠŸΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ повСдСния Ρ€ΠΎΠ±ΠΊΠΈΡ… ΠΈ агрСссивных Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ рассмотрСно нСсколько ΠΏΠ°Ρ€ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΉ двиТСния ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ плотности транспортного ΠΏΠΎΡ‚ΠΎΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ рассчитаны Π½Π° основС ΠΌΠΎΠ΄Π΅Π»ΠΈ Edie’s. ΠŸΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ наибольшСС ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ влияниС транспортныС Π·Π°Ρ‚ΠΎΡ€Ρ‹ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ-Ρ…ΠΎΠ»Π΅Ρ€ΠΈΠΊΠΎΠ² ΠΈΠ½Π° Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ-сангвиников. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, прослСТиваСтся взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ водитСля ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π΅Π³ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ состояния. Π‘Π΄Π΅Π»Π°Π½ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ Π² цСлях ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ бСзопасности Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠ³ΠΎ двиТСния Π·Π° счёт Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… рисков возникновСния Π·Π°Ρ‚ΠΎΡ€ΠΎΠ²Ρ‹Ρ… ситуаций Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ повСдСнчСскиС характСристики Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΈ ΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°ΠΌΠ΅Π½Ρ‚Ρ‹

    ВлияниС частичного замСщСния Ρ‚ΠΈΡ‚Π°Π½Π° Π΅Π³ΠΎ Π³ΠΈΠ΄Ρ€ΠΈΠ΄ΠΎΠΌ Π½Π° структуру ΠΈ свойства ΠΆΠ°Ρ€ΠΎΠΏΡ€ΠΎΡ‡Π½ΠΎΠ³ΠΎ сплава TNM-B1, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ горячСго изостатичСского прСссования Π‘Π’Π‘-ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°

    Get PDF
    This paper investigates the influence of partial substitution of titanium by its hydride on the microstructure and mechanical properties of TNM-B1 alloy obtained by powder metallurgy technology. The impact of the Ti:TiH2 ratio in the reaction mixture and heat treatment modes on the microstructure and mechanical properties of TNM-B1+1%Y2O3 alloy, obtained using high-energy ball milling (HEBM), selfpropagating high-temperature synthesis (SHS), and hot isostatic pressing (HIP) methods, has been examined. It was observed that a 10 % substitution of titanium with its hydride in the reaction mixtures reduces the oxygen content in SHS products from 1 % to 0.8 % due to the generation of a reducing atmosphere during the decomposition of TiH2 in the combustion wave. When the Ti : TiH2 ratio is 90 : 10, highest mechanical properties of TNM-B1+1%Y2O3 alloy were achieved: a compressive strength (Οƒu) of 1200Β±15 MPa and a yield strength (YS) of 1030Β±25 MPa. An increase in the proportion of TiH2 results in a higher content of oxygen impurity, leading to the formation of Al2O3, which reduces the strength and ductility of the material. With additional heat treatment of TNM-B1+1%Y2O3 alloy, the globular structure transforms into a partially lamellar one, leading to an increase in Οƒu by 50–300 MPa, depending on the TiH2 content. This attributed to a decrease in the average grain size and a reduction in dislocation mobility during deformation.Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ исслСдовано влияниС частичного замСщСния Ρ‚ΠΈΡ‚Π°Π½Π° Π΅Π³ΠΎ Π³ΠΈΠ΄Ρ€ΠΈΠ΄ΠΎΠΌ Π½Π° микроструктуру ΠΈ мСханичСскиС свойства сплава TNM-B1, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚Π°Π»Π»ΡƒΡ€Π³ΠΈΠΈ. РассмотрСно влияниС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Ti:TiH2 Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π° микроструктуру ΠΈ мСханичСскиС свойства сплава TNM-B1+1%Y2O3, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² высокоэнСргСтичСской мСханичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ (Π’Π­ΠœΠž), ΡΠ°ΠΌΠΎΡ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡŽΡ‰Π΅Π³ΠΎΡΡ высокотСмпСратурного синтСза (Π‘Π’Π‘) ΠΈ горячСго изостатичСского прСссования (Π“Π˜ΠŸ). УстановлСно, Ρ‡Ρ‚ΠΎ 10 %-Π½ΠΎΠ΅ Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚ΠΈΡ‚Π°Π½Π° Π΅Π³ΠΎ Π³ΠΈΠ΄Ρ€ΠΈΠ΄ΠΎΠΌ Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… смСсях позволяСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ содСрТаниС кислорода Π² Π‘Π’Π‘-ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°Ρ… с 1 Π΄ΠΎ 0,8 % благодаря созданию Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ атмосфСры ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ TiH2 Π² Π²ΠΎΠ»Π½Π΅ горСния. ΠŸΡ€ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Ti : TiH2 = = 90 : 10 достигнуты ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ мСханичСскиС свойства сплава TNM-B1+1%Y2O3: ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ сТатии ΟƒΠ² = 1200Β±15 МПа ΠΈ ΠΏΡ€Π΅Π΄Π΅Π» тСкучСсти Οƒ0,2 = 1030Β±25 МПа. Рост Π΄ΠΎΠ»ΠΈ TiH2 ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ содСрТаниС примСсного кислорода, приводящСго ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ Al2O3, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ сниТаСт ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠ»Π°ΡΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Π—Π° счСт Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ сплава TNM-B1+1%Y2O3 глобулярная структура прСобразуСтся Π² частично Π»Π°ΠΌΠ΅Π»Π»ΡΡ€Π½ΡƒΡŽ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ ΟƒΠ² Π½Π° 50– 300 МПа Π² зависимости ΠΎΡ‚ содСрТания TiH2. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹ΠΉ эффСкт обусловлСн ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ срСднСго Ρ€Π°Π·ΠΌΠ΅Ρ€Π° Π·Π΅Ρ€Π΅Π½ ΠΈ сниТСниСм подвиТности дислокаций ΠΏΡ€ΠΈ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ
    • …
    corecore